์ƒ์„ธ ์ปจํ…์ธ 

๋ณธ๋ฌธ ์ œ๋ชฉ

[Coursera1] Neural-Networks-Deep-Learning : Logistic Regression - Loss /Cost Function, BackPropagation(w,b), Vectorization

๐Ÿ˜Ž ์ง€์‹ in Action/AI (learn, usage)๐Ÿฆพ

by :ํ•ดํ”ผ๋ž˜๋น—๐Ÿพ 2022. 6. 25. 20:32

๋ณธ๋ฌธ

sigmoid func ์‚ฌ์šฉํ•˜๋Š” ์ด์œ 

Loss Function

  • single training dataset :  ์˜ˆ์ธก๊ฐ’์ด ์‹ค์ œ ๊ฐ’๊ณผ ์–ผ๋งˆ๋‚˜ ๋‹ค๋ฅธ์ง€
  • ์‹ ๊ฒฝ๋ง ํ›ˆ๋ จ์— ๋„์›€

Cost Function

  • ์ „์ฒด training dataset

๊ฐ training dataset์— ๋Œ€ํ•œ Loss๊ฐ’์˜

1) ํ‰๊ท  (๊ฐ•์˜์—์„œ๋Š” ํ‰๊ท ๊ฐ’ ์‚ฌ์šฉ)

2) ์ค‘์•™๊ฐ’

๋“ฑ์„ ์ด์šฉํ•ด์„œ ์ „์ฒด training dataset์— ๋Œ€ํ•œ Cost Function์„ ์ •์˜ํ•œ๋‹ค.

์ดˆ๊ธฐ๊ฐ’์—์„œ ๋ถ€ํ„ฐ,
Gradient Descent์„ ํ†ตํ•ด์„œ,
Cost Function์ด ์ตœ์†Œํ™”๋˜๋Š” w์™€ b๋ฅผ ์ฐพ๋Š” ๊ฒƒ(=Global Optimization์— ๊ฐ€๊นŒ์šด w,b)์ด ๋ชฉํ‘œ์ด๋‹ค.

Back Propagation Step  ์„ ํ†ตํ•ด ์ „์ฒด training dataset์— ์ ํ•ฉํ•œ w,b๋ฅผ ์ฐพ์•„๋ณด์ž

= Backward Pass

= Gradient(๊ธฐ์šธ๊ธฐ)๋‚˜ Derivation(๋„ํ•จ์ˆ˜)

 

 


 

๋จผ์ €, Back Propagationํ•˜์—ฌ Loss Function์„ ์ตœ์†Œํ™”ํ•˜๋Š”
๊ฐ’์„ ๊ตฌํ•ด๋ณด์ž (๋‹จ์ผ TrainingSet์— ๋Œ€ํ•˜์—ฌ w,b ๊ตฌํ•˜๊ธฐ)

 

์˜ˆ์ œ์—์„œ Cost Function๋Š” ๊ฐ training dataset์˜ Loss๊ฐ’์˜ ํ‰๊ท ์ด๋‹ค.
Back Propagationํ•˜์—ฌ Cost Function์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฐ’์„ ๊ตฌํ•ด๋ณด์ž (๋ชจ๋“  TrainingSet์— ๋Œ€ํ•˜์—ฌ w,b ๊ตฌํ•˜๊ธฐ)

 

 

์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•ด Vectorization์„ ์ด์šฉํ•ด์„œ for loop๋ฅผ ์ตœ๋Œ€ํ•œ ์—†์• ์ž

 

Logistic Regression์˜ Cost ๋ฅผ ์ค„์ด๋ฉด, ๋ชจ๋ธ์˜ ์ตœ๋Œ€ likelihood์— ๋„๋‹ฌํ•˜๋Š” ์ด์œ 


๊ถ๊ธˆํ–ˆ๋˜ ์ ์„ ๋™๊ธฐ์—๊ฒŒ ์งˆ๋ฌธํ•˜๋‹ค๊ฐ€ ๋‚ด๊ฐ€ ๋‹ต์„ ์ฐพ์•„๋ฒ„๋ ธ๋‹ค. : ) 

์งˆ๋ฌธํ•˜๋‹ค๊ฐ€ ๊นจ๋‹ซ๊ธฐ ใ…Žใ…Ž

 

๊ฐ•์˜์˜ Logistic Regression์—์„œ Cost Function(J)๋ฅผ
๊ฐ training set์— ๋Œ€ํ•ด์„œ Loss Function์˜ ๊ฒฐ๊ณผ๊ฐ’์˜ ํ‰๊ท ์œผ๋กœ ์ •์˜ํ•˜๊ณ  ์žˆ๋‹ค.


๋งŒ์•ฝ ๊ฐ training set์˜ Loss Function ๊ฒฐ๊ณผ ๊ฐ’์˜ ๋ถ„ํฌ๋ฅผ ๋ณด๋‹ˆ ํŠน์ด๊ฐ’์„ ๋งŽ์ด ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค๋ฉด,
ํ‰๊ท ์œผ๋กœ w์™€ b๊ตฌํ•˜๋Š” ๊ฒƒ์ด ์ด์ƒ์ ์ด์ง€ ์•Š์ง€ ์•Š๋Š”๊ฐ€?


>>> ํ‰๊ท ์ด ์•„๋‹Œ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•(MAD)์„ ์‚ฌ์šฉํ•ด์„œ Cost Function ๊ตฌํ•œ๋‹ค...

https://leechanhyuk.github.io/machine_learning/Cost_function/

 

[Concept summary] Cost(Loss) function์˜ ์ข…๋ฅ˜ ๋ฐ ํŠน์ง•

Cost(Loss) function

leechanhyuk.github.io

 

728x90

๊ด€๋ จ๊ธ€ ๋”๋ณด๊ธฐ